Using Dense 3D Reconstruction for Visual Odometry Based on Structure from Motion Techniques
نویسندگان
چکیده
Aim of intense research in the field computational vision, dense 3D reconstruction achieves an important landmark with first methods running in real time with millimetric precision, using RGBD cameras and GPUs. However, these methods are not suitable for low computational resources. The goal of this work is to show a method of visual odometry using regular cameras, without using a GPU. The proposed method is based on techniques of sparse Structure from Motion (SFM), using data provided by dense 3D reconstruction. Visual odometry is the process of estimating the position and orientation of an agent (a robot, for instance), based on images. This paper compares the proposed method with the odometry calculated by Kinect Fusion. Odometry provided by this work can be used to model a camera position and orientation from dense 3D reconstruction.
منابع مشابه
Extended Abstract: Vision Only Pose Estimation and Scene Reconstruction on Airborne Platforms
We aim to demonstrate unaided visual 3D pose estimation and map reconstruction using both monocular and stereo vision techniques. To date, our work has focused on collecting data from Unmanned Aerial Vehicles, which generates a number of significant issues specific to the application. Such issues include scene reconstruction degeneracy from planar data, poor structure initialisation for monocul...
متن کاملLearning monocular visual odometry with dense 3D mapping from dense 3D flow
This paper introduces a fully deep learning approach to monocular SLAM, which can perform simultaneous localization using a neural network for learning visual odometry (L-VO) and dense 3D mapping. Dense 2D flow and a depth image are generated from monocular images by sub-networks, which are then used by a 3D flow associated layer in the L-VO network to generate dense 3D flow. Given this 3D flow...
متن کاملMonocular Visual Odometry and Dense 3D Reconstruction for On-Road Vehicles
More and more on-road vehicles are equipped with cameras each day. This paper presents a novel method for estimating the relative motion of a vehicle from a sequence of images obtained using a single vehicle-mounted camera. Recently, several researchers in robotics and computer vision have studied the performance of motion estimation algorithms under nonholonomic constraints and planarity. The ...
متن کاملDirect Disparity Space: Robust and Real-time Visual Odometry
We present a direct visual odometry formulation using a warping function in disparity space. In disparity space measurement noise is well-modeled by a Gaussian distribution, in contrast to the heteroscedastic noise in 3D space. In addition, the Jacobian of the warp separates the rotation and translation terms, enabling motion to be estimated from all image points even those located at infinity....
متن کاملPiecewise-Planar StereoScan: Structure and Motion from Plane Primitives
This article describes a pipeline that receives as input a sequence of images acquired by a calibrated stereo rig and outputs the camera motion and a Piecewise-Planar Reconstruction (PPR) of the scene. It firstly detects the 3D planes viewed by each stereo pair from semi-dense depth estimation. This is followed by estimating the pose between consecutive views using a new closed-form minimal alg...
متن کامل